Tag Archives: Cold Climate Housing

How do I keep dust, smoke and other particulates out of the house?

A house should manage indoor air quality by regularly exchanging stale “used” indoor air with fresh outdoor air. You also can improve indoor air quality by avoiding unnecessary sources of contamination, such as restricting smoking to outdoors, storing fuels outside, and selecting low-VOC paints and furnishings. During the year, the air in the Interior can contain particulates from wildfires, wood smoke, dust, pollen, car exhaust and other sources that cause you to shut the windows. That’s where filtration systems can help.

Air filtration options

When it comes to indoor air filtration, the best choice for you depends on many factors, including the size and tightness of your house, your existing ventilation system, your sensitivity, and the amount of particulates and other contaminants in the air.  Be aware that irritating and harmful particulates don’t just come from outside but also inside — sources like tobacco smoke, animal dander and mold spores. Other contaminants include gases in paints, carpets, cleaners and other household products. The most common filtration systems are mechanical and target particulate matter. Prices range from about $200-$300 for a one-room portable filter to $6,000-$8,000 for a heat recovery ventilator installation with filtration.

Standalone filtration

The simplest system is a standalone air purifier, which contains a fan and filter elements all in one unit and can be plugged into the wall. These systems are designed to be portable and recirculate air in a single space, and will reduce pollutants like allergens, pet dander and dust from that space. These work well in homes where air quality problems are isolated to one or two areas.

Multiple room air cleaners

Air filtration systems that can serve multiple rooms or even the whole house typically cost more and will require an in-line fan and ductwork, but tend to be more effective.

Keep in mind that whether large or small, filtration systems by themselves don’t introduce fresh outdoor air, but they can provide air cleaning and heat distribution. Whole house systems may be a good option for those with bad allergies or respiratory problems.

Many homeowners who heat primarily with wood install small circulation systems, with an in-line fan and ductwork in just a few rooms to move heat around the house, said Richard Musick, of Ventilation Solutions LLC. The size of the fan is based on how much air you want to circulate.

“If it’s only a couple of rooms, you can get away with a 200 cfm (cubic feet per minute) fan. Big houses can require up to 900-1,500 cfm,” Musick said.

Heat recovery ventilator filtration

While new HRV systems often have high levels of built-in filtration, older models are generally only equipped with coarse debris filters whose primary purpose is to keep the core and motors clean. To help ensure good air quality, a simple filtration system can be attached separately in line with the warm-side supply port on the HRV. All the HRVs at CCHRC have a prefilter to catch the big particles, a main particle filter to catch small particles, and a carbon filter to remove odors, aerosols and VOCs. These filters can be found at HVAC and hardware stores, and are inexpensive and easy to replace. Note that the carbon filters typically need to be replaced more frequently than other air filters.

Rating

Filtration systems are measured by a MERV rating — or minimum efficiency reporting value — which goes from 1 (traps bigger particles) to 20 (traps the smallest particles). You pick a MERV rating based on what you’re trying to filter. For example, MERV 1-4 will take care of pollen, dust mites, and most animal dander, while you’ll need at least MERV 13-16 to filter out smoke particles. HEPA (high efficiency particulate arresting) is in the 17-20 range, removing more than 99 percent of tiny particulates such as carbon dust from the air.

Typically MERV 15 represents the upper limit for residential HRV systems as anything finer may restrict too much airflow. The EPA Office of Radiation and Indoor Air notes that filters with MERV ratings between 7 and 13 are capable of reducing unhealthy particulate matter almost as well as HEPA filters. Additionally, activated carbon filters can be used to neutralize smoke and VOCs.

House tightness

Homes built today are more energy efficient with better insulation and higher levels of air tightness than many of the homes built in previous decades. Building codes now require mechanical ventilation systems for all new residential construction in most if not all northern states. This is simply because uncontrolled air leakage can no longer be counted on to provide the fresh air needed to keep a home healthy. Generally speaking, the highest performing ventilation systems available today will include balanced and regulated fresh air exchanges, in combination with air filtration.

No matter what system you get, check to see what type of replacement filters are required.  Some models may use proprietary filters that are more expensive to replace or have more limited filtration capacity.

What are HRVs and how do they work?

Heat recovery ventilation (HRV) systems are becoming increasingly common in cold climate construction and are almost indispensible in today’s super-insulated, airtight homes. As older homes are receiving energy retrofits and becoming tighter and more insulated, they are facing the same indoor air quality issues you find in new construction. HRVs improve the indoor air quality of your home and save more energy than other types of ventilation. This article provides an overview of the basic purpose and advantages of HRVs.

The main job of the HRV is to supply fresh outdoor air to the house while expelling stale indoor air — which can contain things like moisture, animal dander and gases from combustion appliances and carpets. This is especially important in a home that is too tight to rely on passive air exchange.

At the heart of the HRV is a heat exchanger (often called a “core”) where exhaust air flows next to, but separate from, supply air. Here the cold incoming air is warmed by the heated outgoing air, recovering heat that would otherwise be lost. Most HRVs recover 70 to 90 percent of the heat, depending on the unit and controls, making it much more efficient in a cold climate than a simple exhaust fan that blows warm air directly outside. One of the newest and most advanced models is capable of recovering more than 90 percent of the heat from exhaust air.

The ducting of an HRV system typically supplies fresh air to bedrooms and living areas while exhausting humid air from bathrooms, kitchens, laundry rooms and crawlspaces. The HRV does not eliminate the need for a cooking fan, so a range hood still should be the main outlet for grease and smoke above the cook stove.

The HRV is designed to be balanced, meaning it takes in as much air as it exhausts, maintaining close to neutral pressure inside the home. It should not create a negative pressure in the home, like an unregulated exhaust fan might, which can cause appliances to back draft (suck in air from an exhaust flue and expose you to dangerous gases). It’s also important to remember that HRVs are not meant to supply air to combustion appliances.

Efficient residential units use about as much power as a 60-watt light bulb when running, and are getting more and more efficient. As with any appliance, an HRV requires some maintenance, such as checking the built-in filters every fall to see if they need to be cleaned or replaced.

In addition to providing reliable ventilation in a home, HRV systems can serve several other roles. You can install an in-line filter system on the warm-side supply air port that will filter particles and odors from the incoming air. For example, in the winter this can help keep particulate pollution (from wood-burning and other sources) out of your home.

With the right controls, an HRV can also work in recirculation mode, which distributes heat to hard-to-reach areas in the house (a big help for occupants using a woodstove). Although be aware that recirculation reduces overall fresh air exchange and can redistribute odors from unwanted areas in the house. If you own an older unit, a control upgrade may be a beneficial and cost-effective option.

While it may seem expensive up front, you should look at an HRV system as an investment in a healthy home and peace of mind. In this climate, indoor moisture can cause problems not just for the structure, potentially condensing in the walls and leading to mold and rot, but also for occupant health. An HRV will protect the occupants as well as the structure by removing excess moisture before it has a harmful effect.

If you’re thinking about purchasing a system, make sure you learn about the specifics and find an installer who is willing to educate you and stand behind their work.

How do tankless hot water systems work and are they really more efficient?

Tankless hot water systems, also known as on-demand heaters, only produce hot water when you call for it—by turning on the sink, shower, or other appliance. They heat water instantly as it runs through a pipe and deliver it to your point of use, so you don’t have to store hot water in a tank and heat it all day. These on-demand heaters can be powered with propane, natural gas, or electricity.

You can save energy with this kind of system because you’re not paying to heat water when it’s not being used and you eliminate stand-by heat losses. Another benefit is that you never run out of hot water, unlike a tank system.

But a tankless system is prone to control and pressure issues. One problem is that on-demand heaters can produce bursts of cold water. For instance, if you finish taking a hot shower and turn off the water, the heater will shut off but the water in the pipes will remain warm (because they’re insulated). Yet the water inside the heater will cool off. So the next bather thinks the water is hot, jumps in, and soon gets a blast of cold water making its way through the pipes.

Another limitation of tankless heaters is that they can only heat a certain amount of water per minute. So if the washing machine is turned on during a shower, the hot water is split between the two uses, reducing water pressure all around. The good news? Both of these problems can be solved by adding a couple accessories to your system.

You can prevent cold bursts of water by adding a small, 2- to 10-gallon electric water heater (like a mini water tank) in between the tankless water heater and the point of use. This creates a buffer between sections of chilly water and your showerhead. The heater and installation will cost about $450.

The pressure issue can be fixed by adding a large pump to the system that can push enough water through the heater to accommodate multiple hot-water users at once. Adding the pump will cost about $650.

These add-ons drive up the price of a tankless system from around $300 (for the low end) to more than $1,000. Meanwhile, a hot water tank costs between $200 and $900. If you can live with idiosyncrasies like variable temperature and pressure, and don’t want the add-ons, then the tankless system will pay off in just a few years (thanks to energy savings). If you desire a system that is free of idiosyncrasies, the payback period will be much longer.