Category Archives: Uncategorized

What should I be aware of when building on permafrost?

If pilings are used on permafrost, they must be installed to a depth that will both support the structure and resist frost jacking due to seasonal ground movement.

Permafrost is loosely defined as soil and/or rock that remains frozen for more than two years. In the Fairbanks area, permafrost tends to be discontinuous and is concentrated primarily on north-sloping hills and in lower elevations with heavy ground cover. Big trees do not guarantee the absence of permafrost; it might just mean that permanently frozen ground or ice is down far enough that the soils in that spot can support a larger root system. The only way to be certain of what the ground contains is to have a soils test drilling done.

With permafrost, the safest bet is to it avoid it altogether and move to another piece of land. This is easier said than done, particularly because of the scarcity of buildable land near Fairbanks that is affordable. If you decide to build on permafrost, be as strategic as possible. Smaller and simpler structures will tend to fare better than larger, more complicated ones.

Minimal site disturbance is the accepted practice. The trees and the ground cover are your best friend. They protect and insulate the ground from the heat of the summer. A great example is the green moss you find on many of the shaded low-level areas in Fairbanks. Moss has a high insulating value, and in many cases if you dig down a couple of feet, the ground might still be frozen in the middle of summer.

Strategies for construction on permafrost include:

• As a general rule, the organic layer of ground cover provides insulation and should not be removed, as this will increase the risk of thawing any frozen ground underneath.

• Elevate and properly insulate the bottom of your house to prevent heat losses through the floor system from reaching the ground underneath, which can lead to thawing.

• In post and pad construction, use a thick gravel pad that is significantly wider than the house itself (also insulated if possible) to stabilize the ground and spread building loads.

• If wood or steel piles or helical piers are used, they must be installed to a depth that will both support the structure and resist frost jacking from seasonal ground movement.

• Cut trees sparingly to maximize site shading (while permitting for a fire break).

• Build a wrap-around porch, which will help shade the ground around and underneath the house.

• Incorporate large roof overhangs to shed water away from the house and provide shade.

• Install gutters and manage site drainage well away from the house.

• Retain an engineer familiar with local soils conditions to assist in designing a foundation system that will adequately and safely support your home on the soils specific to your site.

• Septic systems also must be engineered to function on permafrost, and remember that conventional systems might risk thawing the ground.

 

Other Resources 

 

 

 

 

 

 

Permafrost Technology Foundation case studies: http://www.cchrc.org/permafrost-technology-foundation-library

U.S. Permafrost Association website: www.uspermafrost.org/education/PEEP/ptf-manuals.shtml

UAF Cooperative Extension Service online publications at www.uaf.edu/ces.

 

What’s going on in my crawlspace?

Crawl spaces are an area of the house that tends to get neglected. The old adage “Out of sight, out of mind” might apply here. Unfortunately, this also means crawl space problems can go unnoticed until they have an effect on the living space above. At this point, a problem that could have been easily remedied might have progressed into an expensive structural or health-related issue. The crawl space also can present a significant hidden energy drain on a home if not insulated properly.

Good moisture control is of primary concern in a crawl space. This starts outside the building envelope, and many problems can be stopped here in their infancy.

Gutters are a relatively inexpensive addition to a house that can provide huge preventative paybacks. In a climate with lots of rain, a house without gutters can direct lots of water against its foundation. Soils, wood and especially concrete are good conductors of water through capillary action. Picture a paper towel soaking up water — concrete works this way and can carry water great distances. If gutters are not an option, then at minimum the soils around the house should be sloped to direct water away from the building.

Once water reaches the foundation, things get a lot tougher. The structure must be prepared to resist infiltration. Ideally, both concrete and wood foundations should have some form of waterproofing on the outside. If this has deteriorated or was never installed, this might need to be remedied.

Assuming all external sources of moisture penetration have been addressed, the next step is to inspect the interior. With few exceptions, exposed dirt floors should be covered and well sealed with a continuous vapor retarder such as polyethylene with a minimum 6 mil thickness. If the floor will receive traffic, then it might be necessary to use either thicker and/or reinforced polyethylene sheeting or an even more durable membrane such as EPDM rubber. Even a dirt floor that looks and feels “dry” can release significant amounts of moisture, especially after heavy rains.

Another important consideration is radon, a cancer-causing radioactive gas that occurs naturally in the earth. The University of Alaska Fairbanks Cooperative Extension Service advises that if you have never tested your crawl space or basement, cold seasons are the best times to do so. The negative pressures created by combustion appliances, and stack effect in winter time, can bring radon into the home at a higher rate. Although high radon concentrations are considered hazardous, it’s possible that remediation after detection can be relatively simple. Testing crawl spaces is strongly recommended in areas known to have soils with radon concentrations. Test kits and information are available through the CES at 474-1530.

How well a crawl space is insulated and sealed can affect the entire building envelope. In Fairbanks, building codes require foundations to be a minimum of 42 inches below grade to protect the footings from freezing and frost jacking. Anything above that point could be at risk for freezing during the winter. This can mean serious heat losses if the crawl space is under-insulated.

Inspect the foundation walls and floor system closely. If fiberglass insulation was set directly against the inside walls with no moisture protection, or the dirt floor was left exposed, it might be wet and need to be replaced. If the floor joists were insulated, the floor system should be looked at closely. Any exposed ducting should be inspected to make sure all seams are sealed and connected. Be sure that exhaust fan piping (such as dryer ducting) doesn’t just terminate under the floor, but vents directly outside.

If you need to add or replace insulation, rigid foam and spray foam are good options. These types have high R-values and also qualify as vapor retarders. If you use foam, especially below-grade, make sure it’s approved by the manufacturer for your specific application. Spray foam and foam board may have certain restrictions or limitations in crawl spaces because of local fire codes. Some brands of foam insulation might meet fire code at a given thickness, while others might not.

In addition, it might be possible to use either a coat of fire retardant paint, drywall or fiberglass insulation to protect the foam board if required. The best source of information regarding current fire code considerations for foam insulations can be found at the local building department. Keep in mind that typically the local fire codes will need to be met if the home is put up for resale and is subject to inspection.

Tomorrow would be a good time to peek under the floor. The crawl space is integral to the foundation of the house and, in some cases, the largest source of unregulated airflow into the home. It is not a good place to let moisture, poor air quality or bad insulation go unchecked.

I’ve heard that “ECM” (electronically commutated motors) can help home appliances save energy. What are they, and are they worth the extra expense?

There are many ways that manufacturers are increasing the energy efficiency of their products. You’ve probably seen the Energy Star rating on new appliances. Since 1992, the federal government has been giving tax incentives and rebates to manufacturers and/or consumers for making improvements like reducing the amount of water needed to wash a load of towels or the electric load of your refrigerator.

One way to reduce energy use is by using electronically commutated motors (ECM). This is a high-efficiency motor that can work in home systems like air handling and heat distribution (or cooling). ECMs allow the motor to run at different speeds, depending on the demand from the appliance, rather than maintaining one speed constantly. This type of motor has been in use in the U.S. since 1985 and uses as much as 67 percent less power than that used by standard motors (PSC). That’s because sensors in the motor determine the system’s need and provide just the amount of energy needed. ECM motors are also quieter and cooler than standard motors.

Radiant floors are one example. The ECM runs the pump that distributes hot water to heat your floors. A sensor in the system measures the temperature of the fluid in your system and tells the pump to run only as fast as it needs to to heat your rooms. When running most efficiently, a system using an ECM could use less power than a standard light bulb.

HRVs (heat recovery ventilation systems) are also now made with ECMs. Just as with the hot water circulator pump, the HRV’s motor will vary its speed (and therefore energy use) based on the demands from the building.

When you push your “booster” button in the kitchen, the motor will run the fan at a faster rate and exchange more air for a set period of time. When the HRV is operating at its normal (lower) level, it will use less power and run less forcefully.

While it is possible to have a professional retrofit your existing furnace, HRV or other appliance with an ECM motor, it is generally more cost-effective in the long run to purchase a new appliance. Some appliances are not configured to allow the conversion at all — the older it is, the more this is likely.

Energy Use & Savings Potential in Public Buildings

A new white paper by the Alaska Housing Finance Corporation gives the first in-depth picture of the energy use of public buildings in Alaska. By looking at comprehensive energy audits of 327 out of an estimated 5,000 public facilities, CCHRC researchers found that the average building can save $25,000 per year on energy just by modest investments in efficiency.

That adds up to $125 million annually in taxpayer savings. Many of these upgrades are easy and affordable.

Some examples found by AHFC energy auditors include adding occupancy sensors to lighting and ventilation systems, programming thermostats to lower the heat when buildings aren’t occupied and using digital controls to avoid over-ventilating building zones. Energy auditors also found many zero-cost ways to save energy by fixing operational issues such as turning off heat tape in the summer and shutting off backup pumps when they’re not needed.

The report shows Fairbanks buildings are the most energy efficient in the state, while the North Slope, Anchorage and Southeast (outside of Juneau) were the least energy efficient.

Surprisingly, there was no correlation between the cost of energy in a given community and the performance of buildings. In fact, many of the same types of buildings in the same climate consumed vastly different amounts of energy, highlighting differences in construction and operation.

“That’s further evidence that many building managers don’t know how their buildings are performing, because they’ve had no one to compare themselves to,” CCHRC researcher Dustin Madden said.

This report provides facility managers with reference points in their climate and region, and gives tips from energy auditors on saving energy.

While the paybacks of energy improvements are often quick, funding can still be a challenge. Some organizations apply for legislative grants, bonds or funding from the Alaska Energy Authority.

AHFC has a $250 million revolving loan program specifically for state and municipal buildings to invest in energy retrofits. A portion of the energy cost savings are used to repay the loans.

Before now, little was known about the energy use of public facilities statewide. Understanding the performance of these buildings is the first step toward improving it. This research lays the groundwork for future policy decisions, changes in building design and education for facility operators and owners.

The public building audit project was led by AHFC and supported by federal stimulus funds. It included more than 40 auditors and engineers statewide. The recently published white paper on the findings was pulled together by the project leads, with Richard S. Armstrong as lead author and editor. Other contributors to the white paper were Alaska Energy Engineering LLC, Central Alaska Engineering Company, Nortech Engineering Inc., Renewable Energy Alaska Project and the Cold Climate Housing Research Center.

The report is available at: http://cchrc.org/docs/reports/Energy_Use_PublicFacilities.pdf.

Glycol not always best for hydronic systems

Adding glycol to your hydronic heating system is one way to boost the frost protection of your heating system, but first consider if it’s a good match for your system.

Every winter, several days of sustained cold temperatures tend to produce their share of frozen pipes. In the long term, the best way to protect water pipes is by addressing the source of the problems rather than the symptoms. This means insulating and air sealing the walls, floor, foundation or other cold spots that are putting those pipes at risk in the first place. If necessary, consider rerouting water lines to ensure they stay in heated space.

When it comes to the hot water (hydronic) heating system, solutions may not present themselves as readily. In many instances the piping may be inaccessible such as in concrete slabs, or the freezing risk may be too great if a mechanical breakdown occurs. In such cases, bolstering a heating system’s frost protection with glycol may present the best option. Although glycol is quite effective at keeping pipes from freezing, its use does have some important considerations as it has properties that differ from those of water.

For residential heating systems, propylene glycol is most often used as it is non toxic and environmentally friendly. Even so, make sure the glycol is compatible with your particular system and that it contains the proper additives. Typically, an experienced plumber will perform an inspection and decide what changes your particular heating system may require to make it compatible with glycol. Water hardness, the presence of chlorine and other impurities, and the metals used in the system (such as aluminum), can alter the system requirements and the additives in the glycol.

In some cases, a system where glycol has been added may experience weepage. Simply put, this means that marginal areas such as weak solder joints, pipe threads and other fittings that didn’t leak before may experience some leakage with glycol in the system. If leaks occur, they will need to be addressed. Fluid treated with glycol will expand to a greater degree and your expansion tank may need to be upsized. Also, since glycol does not transfer heat as well as water, depending on the amount in the system, this may result in a noticeable loss of system efficiency and a corresponding increase in heating cost. Ideally, glycol should be tested every year or two to ensure that its performance hasn’t degraded. Test kits are available at plumbing stores, or a plumber can test the system as part of routine boiler maintenance. In a properly operating system, glycol can last 10 years or more.

Along with the considerations mentioned above, glycol is an investment and introducing it into a system carries significant expense. Consequently, not every home may see the benefit and many have done fine without it for years, however there are times where it is the best solution for freeze protecting a heating system. Because every case is unique, what matters most is an experienced plumber is there to judge, inspect, and if needed, add glycol to the system to ensure the best possible performance with the fewest complications.

Air Source Heat Pumps in Southeast Alaska

How an air source heat pump works. Photo credit: U.S. Department of Energy.

Air source heat pumps (ASHP) are a heating appliance that act like a refrigerator in reverse.  Where a refrigerator removes heated air from its interior and transfers it to the room, an air source heat pump extracts heat from outside a house, and transfers it to a home’s interior. Using an ASHP in colder climates seems counterintuitive, but the truth is that “cold” outdoor air still contains heat, and an ASHP uses electricity to “step up” that heat to a temperature useful for space heating. Until recently, ASHPs have been used in areas that only experienced mild winters.  However, ongoing advances in technology have resulted in ASHPs that can be installed in colder climates.

Southeast Alaska is a promising candidate for ASHP heating appliances, because it has a milder climate than the rest of the state and access to affordable hydroelectric power. Because ASHPs take some heat from the outdoor air and require less electricity than electric baseboards, they have the potential to reduce heating costs for homeowners who previously heated with electric appliances.

However, there is still uncertainty about the performance of ASHPs in cold climates, and about the barriers to their adoption in Alaska.  CCHRC is planning to explore the opportunity of using ASHPs in Southeast Alaska in a new project: Southeast Alaska ASHP Technology Assessment.  We will conduct a literature review, interview installers, distributers, and ASHP owners, create an inventory of existing ASHPs in Alaska, and model their economic and heating impact.  If you are interested, look for the Technology Assessment on our website in early 2013!

Read CCHRC’s Ground Source Heat Pump assessment here.

Opening of the UAF Sustainable Village Wednesday, Oct. 3

The UAF Sustainable Village is a community for students who are passionate about the environment and reducing their carbon footprint. It is a collaboration between the UAF Office of Sustainability and the  Cold Climate Housing Research Center  to build and research energy efficient housing, renewable energy, and innovative heating and ventilation systems. Students at the Village make a commitment to sustainability through monitoring the systems, conserving energy and water, and helping develop additions like a greenhouse or community center.

On Wednesday we will celebrate the opening of the Village with a ribbon cutting on-site and words by CCHRC President Jack Hebert, UAF Chancellor Brian Rogers, student workers and student residents.

For more info contact Molly Rettig, Communications Coordinator, at molly at cchrc.org.

Wednesday October 3, 2012 at 12 p.m.

 

11:30—Press invited to tour the interior of a student home

12:00—Ribbon cutting & brief words by Chancellor Brian Rogers & Jack Hebert

12:15—Move to CCHRC for brief ceremony—student posters on display

12:30—CCHRC President/CEO Jack Hebert welcoming

12:40—Words from student on design/construction team – Skye Sturm

12:50—Words from student resident

1:00—Time for interviews

1:15-1:30—Optional public tour of a student home

Sustainable Village Week 21: STUDENTS!

The homes are up, the students are moved in, and the heat is on! The construction site has been quickly transformed into homes with the arrival of students. Boxes of nails and piles of pipe fittings have been replaced with furniture, books, food, bikes and other everyday objects. The homes have a warm, homey feel on the inside and a very unique and eclectic yet natural look from the outside–a patchwork of bright colors and materials while surrounded by aspen, spruce, and natural habitat.

The Village is not just homes but also a research project, and science and innovation have been embedded throughout the site. Pressure transducers, flow meters, and other sensors are wired to data loggers and mini computers in each of the mechanical rooms to track how much fuel is being consumed and how much heat is being produced off the solar collectors. Thermistors in the ground will tell us whether heat is leaking through the foundation and whether the passive cooling system in the raft foundation is working. Students will help measure electricity, fuel use (of the pellet stove) and potentially many other aspects of the home’s performance.

Workers are doing finishing touches on deck railings, paint, and trim. But for the most part, the Village is looking complete. It’s exciting to see students starting a new chapter at the same time the Sustainable Village comes to life!

What are HRVs and how do they work?

Heat recovery ventilation (HRV) systems are becoming increasingly common in cold climate construction and are almost indispensible in today’s super-insulated, airtight homes. As older homes are receiving energy retrofits and becoming tighter and more insulated, they are facing the same indoor air quality issues you find in new construction. HRVs improve the indoor air quality of your home and save more energy than other types of ventilation. This article provides an overview of the basic purpose and advantages of HRVs.

The main job of the HRV is to supply fresh outdoor air to the house while expelling stale indoor air — which can contain things like moisture, animal dander and gases from combustion appliances and carpets. This is especially important in a home that is too tight to rely on passive air exchange.

At the heart of the HRV is a heat exchanger (often called a “core”) where exhaust air flows next to, but separate from, supply air. Here the cold incoming air is warmed by the heated outgoing air, recovering heat that would otherwise be lost. Most HRVs recover 70 to 90 percent of the heat, depending on the unit and controls, making it much more efficient in a cold climate than a simple exhaust fan that blows warm air directly outside. One of the newest and most advanced models is capable of recovering more than 90 percent of the heat from exhaust air.

The ducting of an HRV system typically supplies fresh air to bedrooms and living areas while exhausting humid air from bathrooms, kitchens, laundry rooms and crawlspaces. The HRV does not eliminate the need for a cooking fan, so a range hood still should be the main outlet for grease and smoke above the cook stove.

The HRV is designed to be balanced, meaning it takes in as much air as it exhausts, maintaining close to neutral pressure inside the home. It should not create a negative pressure in the home, like an unregulated exhaust fan might, which can cause appliances to back draft (suck in air from an exhaust flue and expose you to dangerous gases). It’s also important to remember that HRVs are not meant to supply air to combustion appliances.

Efficient residential units use about as much power as a 60-watt light bulb when running, and are getting more and more efficient. As with any appliance, an HRV requires some maintenance, such as checking the built-in filters every fall to see if they need to be cleaned or replaced.

In addition to providing reliable ventilation in a home, HRV systems can serve several other roles. You can install an in-line filter system on the warm-side supply air port that will filter particles and odors from the incoming air. For example, in the winter this can help keep particulate pollution (from wood-burning and other sources) out of your home.

With the right controls, an HRV can also work in recirculation mode, which distributes heat to hard-to-reach areas in the house (a big help for occupants using a woodstove). Although be aware that recirculation reduces overall fresh air exchange and can redistribute odors from unwanted areas in the house. If you own an older unit, a control upgrade may be a beneficial and cost-effective option.

While it may seem expensive up front, you should look at an HRV system as an investment in a healthy home and peace of mind. In this climate, indoor moisture can cause problems not just for the structure, potentially condensing in the walls and leading to mold and rot, but also for occupant health. An HRV will protect the occupants as well as the structure by removing excess moisture before it has a harmful effect.

If you’re thinking about purchasing a system, make sure you learn about the specifics and find an installer who is willing to educate you and stand behind their work.

What is reflective insulation and does it work in a cold climate?

Reflective insulation is typically made of aluminum foil on a backing like rigid foam (pictured here), plastic film, polyethylene bubbles or cardboard.

Reflective insulation is a type of thermal insulation with at least one reflective surface that is installed so that the surface faces an air gap. It is usually made of an aluminum foil installed on a variety of backings, such as rigid foam, plastic film, polyethylene bubbles or cardboard.

CCHRC recently researched the use of reflective insulation in cold climate construction, reviewing other studies and testing two foam insulations with reflective facers. Researchers found that the use of reflective insulation has very little to offer cold climate construction.

To understand how it works, you need to understand the three types of heat transfer: convection is heat transfer through air movement; conduction is heat transfer through solid materials that are touching; and thermal radiation is when heat travels in electromagnetic waves, like energy from the sun.

Reflective insulations are designed to reduce heat transfer through radiation by placing a surface that reflects thermal radiation in combination with an air gap. The reflective surface reflects most of the thermal radiation toward the air space, preventing it from being absorbed by the material. If you don’t have an air space, then the heat is lost by  conduction through the reflective surface. In real life, all these forms of heat transfer occur simultaneously. (Unless you travel to space to remove the atmosphere (air) from the equation. This partially explains why NASA took an interest in reflective insulations, as they faced very different conditions than we do in Alaska.)

In warmer climates, it is common to add reflective insulation in the attic to reduce heat transfer from the roof decking to the underlying insulation, reducing overall solar heat gain within a building. But in cold climates, we have different concerns. For example, homes lose heat primarily from air leaking through the attic and walls and conduction through all components of the house. Because most heat loss occurs this way, reflective insulation would not make much difference in reducing the overall heat loss of your home.

To illustrate this point, let’s examine part of a house where a reflective insulation system is added. If you created a 1-inch air gap into the wall or ceiling with a reflective surface on one side, you could expect to gain around R-2. But walls and ceilings are typically insulated in the range of R-20 to R-60, and reflective insulation faces sharp diminishing returns if multiple layers are installed. Also remember that the air gap needs to prevent airflow and the reflective surface needs to stay clean from dust and moisture.

In addition, many reflective insulations can increase the potential for moisture problems in your home if not placed properly, as they often act as strong vapor retarders. So if you’re using these products, you need to consider not just how they affect heat loss, but also moisture flow.

Watch out for claims about reflective insulations providing benefits that go beyond R-value. All of the product’s insulation value is captured by the R-value, just like fiberglass batts, foam board, and other insulation products. If there are additional benefits, such as reducing air leakage, then those benefits can be measured and compared to other air barrier systems.

In essence, reflective insulation may help in warmer climates but is not a great fit for a cold place like Alaska.